
14.1 OVERVIEW
This chapter provides a brief summary of the development process that
you use to create executable programs for the ADSP-2100 family
processors. The summary is followed by a number of software examples
that can give you an idea of how to write your own applications.

The software examples presented in this chapter are used a variety of DSP
operations. The FIR filter and cascaded biquad IIR filter are general filter
algorithms that can be tailored to many applications. Matrix
multiplication is used in image processing and other areas requiring
vector operations. The sine function is required for many scientific
calculations. The FFT (fast Fourier transform) has wide application in
signal analysis. Each of these examples is described in greater detail in
Digital Signal Processing Applications Using The ADSP-2100 Family, Volume
1, available from Prentice Hall. They are presented here to show some
aspects of typical programs.

The FFT example is a complete program, showing a subroutine that
performs the FFT and a main calling program that initializes registers and
calls the FFT subroutine as well as an auxiliary routine.

Each of the other examples is shown as a subroutine in its own module.
The module starts with a .MODULE directive that names the module and
ends with the .ENDMOD directive. The subroutine can be called from a
program in another module that declares the starting label of the
subroutine as an external symbol. This is the same label that is declared
with the .ENTRY directive in the subroutine module. The last instruction
in each subroutine is the RTS instruction, which returns control to the
calling program.

14 – 1

14Software Examples



14 Software Examples

14 – 2

Each module is prefaced by a comment block that provides the following
information:

Calling Parameters Register values that the calling program must
set before calling the subroutine

Return Values Registers that hold the results of the subroutine

Altered Registers Registers used by the subroutine. The calling
program must save them before calling the
subroutine and restore them afterward if it
needs to preserve their values.

Computation Time The number of instruction cycles needed to
perform the subroutine

14.2 SYSTEM DEVELOPMENT PROCESS
The ADSP-2100 family of processors is supported by a complete set of
development tools. Programming aids and processor simulators facilitate
software design and debug. In-circuit emulators and demonstration
boards help in hardware prototyping.

The software development system includes several programs: System
Builder, Assembler, Linker, PROM Splitter, Simulators and C Compiler
with Runtime Library. These programs are described in detail in the
ADSP-2100 Family Assembler Tools & Simulator Manual, ADSP-2100 Family
C Tools Manual, and ADSP-2100 Family C Runtime Library Manual.

Figure 14.1 shows a flow chart of the system development process.

The development process begins with the task of describing the hardware
environment for the development software. You create a system
specification file using a text editor. This file contains simple directives
that describe the locations of memory and I/O ports, the type of
processor, and the state of the MMAP pin in the target hardware
configuration. The system builder reads this file and generates an
architecture description file which passes information to the linker,
simulator and emulator.

You begin code generation by creating source code files in C language or



14Software Examples

14 – 3

STEP 1:DESCRIBE ARCHITECTURE

SYSTEM
BUILDER

STEP 2:GENERATE CODE LINKER EXECUTABLE
FILE

ASSEMBLER
SOURCE

FILE
ASSEMBLER

ANSI
C COMPILER

C SOURCE
FILE

EZ-ICE™ EMULATOR

STEP 3:DEBUG SOFTWARE

STEP 4:DEBUG IN TARGET SYSTEM

EZ-LAB™ EVALUATION BOARD
OR

THIRD-PARTY PC PLUG-IN CARDS
 SOFTWARE SIMULATOR

TARGET
BOARD

STEP 5:MANUFACTURE FINAL SYSTEM  PROM SPLITTER
TESTED &

DEBUGGED
DSP BOARD

= USER FILE OR HARDWARE

= SOFTWARE DEVELOPMENT TOOL

= HARDWARE DEVELOPMENT TOOL

SYSTEM
ARCHITECTURE

FILE

assembly language. A module is a unit of assembly language comprising a main
program, subroutine, or data variable declarations. C programmers write C
language files and use the C compiler to create assembly code modules from
them. Assembly language programmers write assembly code modules directly.
Each code module is assembled separately by the assembler.

The linker links several modules together to form an executable program
(memory image file). The linker reads the target hardware information from the
architecture description file to determine appropriate addresses for code and
data. In the assembly modules you may specify each code/data fragment as
completely relocatable, relocatable within a defined memory segment, or non-

Figure 14.1  ADSP-2100 Family System Development Process



14 Software Examples

14 – 4

relocatable (placed at an absolute address).

The linker places non-relocatable code or data modules at the specified
memory addresses, provided the memory area has the correct attributes.
Relocatable objects are placed at addresses selected by the linker. The
linker generates a memory image file containing a single executable
program which may be loaded into a simulator or emulator for testing.

The simulator provides windows that display different portions of the
hardware environment. To replicate the target hardware, the simulator
configures its memory according to the architecture description file
generated by the system builder, and simulates memory-mapped I/O
ports. This simulation allows you to debug the system and analyze
performance before committing to a hardware prototype.

After fully simulating your system and software, you can use an EZ-ICE
in-circuit emulator in the prototype hardware to test circuitry, timing, and
real-time software execution.

The PROM splitter software tool translates the linker-output program
(memory image file) into an industry-standard file format for a PROM
programmer. Once you program the code in PROM devices and install an
ADSP-21xx processor into your prototype, it is ready to run.

14.3 SINGLE-PRECISION FIR TRANSVERSAL FILTER
An FIR transversal filter structure can be obtained directly from the
equation for discrete-time convolution.

N–1

y(n) =  ∑   hk(n) x(n–k)
k=0

In this equation, x(n) and y(n) represent the input to and output from the
filter at time n. The output y(n) is formed as a weighted linear
combination of the current and past input values of x, x(n–k). The weights,
hk(n), are the transversal filter coefficients at time n. In the equation,
x(n–k) represents the past value of the input signal “contained” in the
(k+1)th tap of the transversal filter. For example, x(n), the present value of
the input signal, would correspond to the first tap, while x(n–42) would



14Software Examples

14 – 5

correspond to the forty-third filter tap.

The subroutine that realizes the sum-of-products operation used in
computing the transversal filter is shown in Listing 14.1.

.MODULE fir_sub;

{
FIR Transversal Filter Subroutine

Calling Parameters
I0 —> Oldest input data value in delay line
L0 = Filter length (N)
I4 —> Beginning of filter coefficient table
L4 = Filter length (N)
M1,M5 = 1
CNTR = Filter length - 1 (N-1)

Return Values
MR1 = Sum of products (rounded and saturated)
I0 —> Oldest input data value in delay line
I4 —> Beginning of filter coefficient table

Altered Registers
MX0,MY0,MR

Computation Time
N - 1 + 5 + 2 cycles

All coefficients and data values are assumed to be
in 1.15 format.

}

.ENTRY fir;

fir: MR=0, MX0=DM(I0,M1), MY0=PM(I4,M5);
DO sop UNTIL CE;

sop:    MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M5);
MR=MR+MX0*MY0(RND);
IF MV SAT MR;
RTS;

.ENDMOD;

Listing 14.1  Single-Precision FIR Transversal Filter



14 Software Examples

14 – 6

14.4 CASCADED BIQUAD IIR FILTER
A second-order biquad IIR filter section is represented by the transfer
function (in the z-domain):

H(z) = Y(z)/X(z) = ( B0 + B1z–1 + B2z–2 )/( 1 + A1z–1 + A2z–2 )

where A1, A2, B0, B1 and B2 are coefficients that determine the desired
impulse response of the system H(z). The corresponding difference
equation for a biquad section is:

Y(n) = B0X(n) + B1X(n–1) + B2X(n–2) – A1Y(n–1) – A2Y(n–2)

Higher-order filters can be obtained by cascading several biquad sections
with appropriate coefficients. The biquad sections can be scaled separately
and then cascaded in order to minimize the coefficient quantization and
the recursive accumulation errors.

A subroutine that implements a high-order filter is shown in Listing 14.2.
A circular buffer in program memory contains the scaled biquad
coefficients. These coefficients are stored in the order: B2, B1, B0, A2 and A1
for each biquad. The individual biquad coefficient groups must be stored
in the order that the biquads are cascaded.

.MODULE biquad_sub;

{ Nth order cascaded biquad filter subroutine

Calling Parameters:

SR1=input X(n)
I0 —> delay line buffer for X(n-2), X(n-1),

Y(n-2), Y(n-1)
L0 = 0
I1 —> scaling factors for each biquad section
L1 = 0  (in the case of a single biquad)
L1 = number of biquad sections

(for multiple biquads)
I4 —> scaled biquad coefficients
L4 = 5 x [number of biquads]
M0, M4 = 1
M1 = -3
M2 = 1 (in the case of multiple biquads)
M2 = 0 (in the case of a single biquad)



14Software Examples

14 – 7

M3 = (1 - length of delay line buffer)

Return Value:
SR1 = output sample Y(n)

Altered Registers:
SE, MX0, MX1, MY0, MR, SR

Computation Time (with N even):
ADSP-2101/2102: (8 x N/2) + 5 cycles
ADSP-2100/2100A: (8 x N/2) + 5 + 5 cycles

All coefficients and data values are assumed to
be in 1.15 format

}

.ENTRY biquad;

biquad: CNTR = number_of_biquads
DO sections UNTIL CE; {Loop once for each biquad}

SE=DM(I1,M2); {Scale factor for biquad}
MX0=DM(I0,M0), MY0=PM(I4,M4);
MR=MX0*MY0(SS), MX1=DM(I0,M0), MY0=PM(I4,M4);
MR=MR+MX1*MY0(SS), MY0=PM(I4,M4);
MR=MR+SR1*MY0(SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M4);
DM(I0,M0)=MX1, MR=MR+MX0*MY0(RND);

sections: DM(I0,M0)=SR1, SR=ASHIFT MR1 (HI);
DM(I0,M0)=MX0;
DM(I0,M3)=SR1;
RTS;

.ENDMOD;

Listing 14.2  Cascaded Biquad IIR Filter

14.5 SINE APPROXIMATION
The following formula approximates the sine of the input variable x:

sin(x) = 3.140625x + 0.02026367x2 – 5.325196x3 + 0.5446778x4 + 1.800293x5

The approximation is accurate for any value of x from 0˚ to 90˚ (the first
quadrant). However, because sin(–x) = –sin(x) and sin(x) = sin(180˚ – x),
you can infer the sine of any angle from the sine of an angle in the first



14 Software Examples

14 – 8

quadrant.

The routine that implements this sine approximation, accurate to within
two LSBs, is shown in Listing 14.3. This routine accepts input values in
1.15 format. The coefficients, which are initialized in data memory in 4.12
format, have been adjusted to reflect an input value scaled to the
maximum range allowed by this format. On this scale, 180˚ equals the
maximum positive value, 0x7FFF, and –180˚ equals the maximum
negative value, 0x8000.

The routine shown in Listing 14.3 first adjusts the input angle to its
equivalent in the first quadrant. The sine of the modified angle is
calculated by multiplying increasing powers of the angle by the
appropriate coefficients. The result is adjusted if necessary to compensate
for the modifications made to the original input value.

.MODULE Sin_Approximation;

{
Sine Approximation

Y = Sin(x)

Calling Parameters
AX0 = x in scaled 1.15 format
M3 = 1
L3 = 0

Return Values
AR = y in 1.15 format

Altered Registers
AY0,AF,AR,MY1,MX1,MF,MR,SR,I3

Computation Time
25 cycles



14Software Examples

14 – 9

}

.VAR/DM sin_coeff[5];

.INIT sin_coeff : 0x3240, 0x0053, 0xAACC, 0x08B7, 0x1CCE;

.ENTRY sin;

sin: I3=^sin_coeff; {Pointer to coeff. buffer}
AY0=0x4000;
AR=AX0, AF=AX0 AND AY0; {Check 2nd or 4th quad.}
IF NE AR=-AX0; {If yes, negate input}
AY0=0x7FFF;
AR=AR AND AY0; {Remove sign bit}
MY1=AR;
MF=AR*MY1 (RND), MX1=DM(I3,M3); {MF = x 2}
MR=MX1*MY1 (SS), MX1=DM(I3,M3); {MR = C 1x}
CNTR=3;
DO approx UNTIL CE;

MR=MR+MX1*MF (SS);
approx: MF=AR*MF (RND), MX1=DM(I3,M3);

MR=MR+MX1*MF (SS);
SR=ASHIFT MR1 BY 3 (HI);
SR=SR OR LSHIFT MR0 BY 3 (LO); {Convert to 1.15 format}
AR=PASS SR1;
IF LT AR=PASS AY0; {Saturate if needed}
AF=PASS AX0;
IF LT AR=-AR; {Negate output if needed}
RTS;

.ENDMOD;

Listing 14.3  Sine Approximation

14.6 SINGLE-PRECISION MATRIX MULTIPLY
The routine presented in this section multiplies two input matrices: X, an
RxS (R rows, S columns) matrix stored in data memory and Y, an SxT
(S rows, T  columns) matrix stored in program memory. The output Z, an
RxT (R rows, T columns) matrix, is written to data memory.

The routine is shown in Listing 14.4. It requires a number of registers to be
initialized, as listed in the “Calling Parameters” section of the initial
comment. SE must contain the value necessary to shift the result of each
multiplication into the desired format. For example, SE would be set to
zero to obtain a matrix of 1.31 values from the multiplication of two
matrices of 1.15 values.



14 Software Examples

14 – 10

.MODULE matmul;

{
Single-Precision Matrix Multiplication

S
Z(i,j) = ∑ [X(i,k) × Y(k,j)]   i=0 to R; j=0 to T

k=0

X is an RxS matrix
Y is an SxT matrix
Z is an RxT matrix

Calling Parameters
I1 —> Z buffer in data memory L1 = 0
I2 —> X, stored by rows in data memory L2 = 0
I6 —> Y, stored by rows in program memory L6 = 0
M0 = 1 M1 = S
M4 = 1 M5 = T
L0,L4,L5 = 0
SE = Appropriate scale value
CNTR = R

Return Values
Z Buffer filled by rows

Altered Registers
I0,I1,I2,I4,I5,MR,MX0,MY0,SR

Computation Time
((S + 8) × T + 4) × R + 2 + 2 cycles



14Software Examples

14 – 11

}

.ENTRY spmm;

spmm: DO row_loop UNTIL CE;
I5=I6; {I5 = start of Y}
CNTR=M5;
DO column_loop UNTIL CE;

I0=I2; {Set I0 to current X row}
I4=I5; {Set I4 to current Y col}
CNTR=M1;
MR=0, MX0=DM(I0,M0), MY0=PM(I4,M5); {Get 1st data}
DO element_loop UNTIL CE;

element_loop: MR=MR+MX0*MY0 (SS), MX0=DM(I0,M0),
MY0=PM(I4,M5);

SR=ASHIFT MR1 (HI), MY0=DM(I5,M4); {Update I5}
SR=SR OR LSHIFT MR0 (LO); {Finish shift}

column_loop: DM(I1,M0)=SR1; {Save output}
row_loop: MODIFY(I2,M1); {Update I2 to next X row}

RTS;
.ENDMOD;

Listing 14.4  Single-Precision Matrix Multiply

14.7 RADIX-2 DECIMATION-IN-TIME FFT
The FFT program includes three subroutines. The first subroutine
scrambles the input data (places the data in bit-reversed address order), so
that the FFT output will be in the normal, sequential order. The next
subroutine computes the FFT and the third scales the output data to
maintain the block floating-point data format.

The program is contained in four modules. The main module declares and
initializes data buffers and calls subroutines. The other three modules
contain the FFT, bit reversal, and block floating-point scaling subroutines.
The main module calls the FFT and bit reversal subroutines. The FFT
module calls the data scaling subroutine.

The FFT is performed in place; that is, the outputs are written to the same
buffer that the inputs are read from.

14.7.1 Main Module
The dit_fft_main module is shown in Listing 14.5. N is the number of
points in the FFT (in this example, N=1024) and N_div_2 is used for
specifying the lengths of buffers. To change the number of points in the



14 Software Examples

14 – 12

FFT, you change the value of these constants and the twiddle factors.

The data buffers twid_real and twid_imag in program memory hold the
twiddle factor cosine and sine values. The inplacereal, inplaceimag,
inputreal and inputimag buffers in data memory store real and imaginary
data values. Sequentially ordered input data is stored in inputreal and
inputimag. This data is scrambled and written to inplacereal and
inplaceimag. A four-location buffer called padding is placed at the end of
inplaceimag to allow data accesses to exceed the buffer length. This buffer
assists in debugging but is not necessary in a real system. Variables (one-
location buffers) named groups, bflys_per_group, node_space and
blk_exponent are declared last.

The real parts (cosine values) of the twiddle factors are stored in the buffer
twid_real. This buffer is initialized from the file twid_real.dat. Likewise,
twid_imag.dat values initialize the twid_imag buffer that stores the sine
values of the twiddle factors. In an actual system, the hardware would be
set up to initialize these memory locations.

The variable called groups is initialized to N_div_2, and bflys_per_group
and node_space are each initialized to 2 because there are two butterflies
per group in the second stage of the FFT. The blk_exponent variable is
initialized to zero. This exponent value is updated when the output data is
scaled.

After the initializations are complete, two subroutines are called. The first
subroutine places the input sequence in bit-reversed order. The second
performs the FFT and calls the block floating-point scaling routine.

.MODULE/ABS=4 dit_fft_main;

.CONST N=1024, N_div_2=512; {For 1024 points}

.VAR/PM/RAM/CIRC twid_real [N_div_2];

.VAR/PM/RAM/CIRC twid_imag [N_div_2];

.VAR/DM/RAM/ABS=0 inplacereal [N], inplaceimag [N], padding
[4];
.VAR/DM/RAM/ABS=H#1000 inputreal [N], inputimag [N];
.VAR/DM/RAM groups, bflys_per_group, node_space,

blk_exponent;

.INIT twid_real: <twid_real.dat>;

.INIT twid_imag: <twid_imag.dat>;

.INIT inputreal: <inputreal.dat>;

.INIT inputimag: <inputimag.dat>;



14Software Examples

14 – 13

.INIT inplaceimag: <inputimag.dat>;

.INIT groups: N_div_2;

.INIT bflys_per_group: 2;

.INIT node_space: 2;

.INIT blk_exponent: 0;

.INIT padding: 0,0,0,0; {Zeros after inplaceimag}

.GLOBAL twid_real, twid_imag;

.GLOBAL inplacereal, inplaceimag;

.GLOBAL inputreal, inputimag;

.GLOBAL groups, bflys_per_group, node_space, blk_exponent;

.EXTERNAL scramble, fft_strt;

CALL scramble; {subroutine calls}
CALL fft_strt;
TRAP; {halt program}

.ENDMOD;

Listing 14.5  Main Module, Radix-2 DIT FFT

14.7.2 DIT FFT Subroutine
The radix-2 DIT FFT routine is shown in Listing 14.6. The constants N and
log2N are the number of points and the number of stages in the FFT,
respectively. To change the number of points in the FFT, you modify these
constants.

The first and last stages of the FFT are performed outside of the loop that
executes all the other stages. Treating the first and last stages individually
allows them to be executed faster. In the first stage, there is only one
butterfly per group, so the butterfly loop is unnecessary, and the twiddle
factors are all either 1 or 0, so no multiplications are necessary. In the last
stage, there is only one group, so the group loop is unnecessary, as are the



14 Software Examples

14 – 14

setup operations for the next stage.

{1024 point DIT radix 2 FFT}
{Block Floating Point Scaling}

.MODULE fft;

{ Calling Parameters
inplacereal=real input data in scrambled order
inplaceimag=all zeroes (real input assumed)
twid_real=twiddle factor cosine values
twid_imag=twiddle factor sine values
groups=N/2
bflys_per_group=1
node_space=1

Return Values
inplacereal=real FFT results, sequential order
inplaceimag=imag. FFT results, sequential order

Altered Registers
I0,I1,I2,I3,I4,I5,L0,L1,L2,L3,L4,L5
M0,M1,M2,M3,M4,M5
AX0,AX1,AY0,AY1,AR,AF
MX0,MX1,MY0,MY1,MR,SB,SE,SR,SI

Altered Memory
inplacereal, inplaceimag, groups, node_space,
bflys_per_group, blk_exponent

}

.CONST log2N=10, N=1024, nover2=512, nover4=256;

.EXTERNAL twid_real, twid_imag;

.EXTERNAL inplacereal, inplaceimag;

.EXTERNAL groups, bflys_per_group, node_space;

.EXTERNAL bfp_adj;

.ENTRY fft_strt;

fft_strt: CNTR=log2N - 2; {Initialize stage counter}
M0=0;
M1=1;
L1=0;
L2=0;
L3=0;
L4=%twid_real;
L5=%twid_imag;
L6=0;



14Software Examples

14 – 15

SB=-2;

{—————— STAGE 1 ——————}

I0=^inplacereal;
I1=^inplacereal + 1;
I2=^inplaceimag;
I3=^inplaceimag + 1;
M2=2;

CNTR=nover2;
AX0=DM(I0,M0);
AY0=DM(I1,M0);
AY1=DM(I3,M0);

DO group_lp UNTIL CE;
AR=AX0+AY0, AX1=DM(I2,M0);
SB=EXPADJ AR, DM(I0,M2)=AR;
AR=AX0-AY0;
SB=EXPADJ AR;
DM(I1,M2)=AR, AR=AX1+AY1;
SB=EXPADJ AR, DM(I2,M2)=AR;
AR=AX1-AY1, AX0=DM(I0,M0);
SB=EXPADJ AR, DM(I3,M2)=AR;
AY0=DM(I1,M0);

group_lp: AY1=DM(I3,M0);
CALL bfp_adj;

{——————————STAGES 2 TO N-1———————————————————}

DO stage_loop UNTIL CE; {Compute all stages in FFT}
I0=^inplacereal; {I0 ->x0 in 1st grp of stage}
I2=^inplaceimag; {I2 ->y0 in 1st grp of stage}
SI=DM(groups);
SR=ASHIFT SI BY -1(LO); {groups / 2}
DM(groups)=SR0; {groups=groups / 2}
CNTR=SR0; {CNTR=group counter}
M4=SR0; {M4=twiddle factor modifier}
M2=DM(node_space); {M2=node space modifier}
I1=I0;
MODIFY(I1,M2); {I1 ->y0 of 1st grp in stage}
I3=I2;



14 Software Examples

14 – 16

MODIFY(I3,M2); {I3 ->y1 of 1st grp in stage}

DO group_loop UNTIL CE;
I4=^twid_real; {I4 -> C of W0}
I5=^twid_imag; {I5 -> (-S) of W0}
CNTR=DM(bflys_per_group); {CNTR=bfly count}
MY0=PM(I4,M4),MX0=DM(I1,M0); {MY0=C,MX0=x1 }
MY1=PM(I5,M4),MX1=DM(I3,M0); {MY1=-S,MX1=y1}
DO bfly_loop UNTIL CE;

MR=MX0*MY1(SS),AX0=DM(I0,M0);
{MR=x1(-S),AX0=x0}

MR=MR+MX1*MY0(RND),AX1=DM(I2,M0);
{MR=(y1(C)+x1(-S)),AX1=y0}

AY1=MR1,MR=MX0*MY0(SS);
{AY1=y1(C)+x1(-S),MR=x1(C)}

MR=MR-MX1*MY1(RND); {MR=x1(C)-y1(-S)}
AY0=MR1,AR=AX1-AY1;

{AY0=x1(C)-y1(-S),AR=y0-[y1(C)+x1(-S)]}
SB=EXPADJ AR,DM(I3,M1)=AR;

{Check for bit growth, y1=y0-[y1(C)+x1(-S)]}
AR=AX0-AY0,MX1=DM(I3,M0),MY1=PM(I5,M4);
{AR=x0-[x1(C)-y1(-S)], MX1=next y1,MY1=next (-S)}
SB=EXPADJ AR,DM(I1,M1)=AR;

{Check for bit growth, x1=x0-[x1(C)-y1(-S)]}
AR=AX0+AY0,MX0=DM(I1,M0),MY0=PM(I4,M4);

{AR=x0+[x1(C)-y1(-S)], MX0=next x1,MY0=next C}
SB=EXPADJ AR,DM(I0,M1)=AR;

{Check for bit growth, x0=x0+[x1(C)-y1(-S)]}
AR=AX1+AY1; {AR=y0+[y1(C)+x1(-S)]}

bfly_loop: SB=EXPADJ AR,DM(I2,M1)=AR;
{Check for bit growth, y0=y0+[y1(C)+x1(-S)]}

MODIFY(I0,M2); {I0 ->1st x0 in next group}
MODIFY(I1,M2); {I1 ->1st x1 in next group}
MODIFY(I2,M2); {I2 ->1st y0 in next group}

group_loop: MODIFY(I3,M2); {I3 ->1st y1 in next group}

CALL bfp_adj; {Compensate for bit growth}
SI=DM(bflys_per_group);
SR=ASHIFT SI BY 1(LO);
DM(node_space)=SR0; {node_space=node_space / 2}

stage_loop: DM(bflys_per_group)=SR0;



14Software Examples

14 – 17

 {bflys_per_group=bflys_per_group / 2}

{———— LAST STAGE —————}

I0=^inplacereal;
I1=^inplacereal+nover2;
I2=^inplaceimag;
I3=^inplaceimag+nover2;

CNTR=nover2;
M2=DM(node_space);
M4=1;
I4=^twid_real;
I5=^twid_imag;

MY0=PM(I4,M4),MX0=DM(I1,M0); {MY0=C,MX0=x1}
MY1=PM(I5,M4),MX1=DM(I3,M0); {MY1=-S,MX1=y1}
DO bfly_lp UNTIL CE;

MR=MX0*MY1(SS),AX0=DM(I0,M0); {MR=x1(-S),AX0=x0}
MR=MR+MX1*MY0(RND),AX1=DM(I2,M0);

{MR=(y1(C)+x1(-S)),AX1=y0}
AY1=MR1,MR=MX0*MY0(SS); {AY1=y1(C)+x1(-S),MR=x1(C)}
MR=MR-MX1*MY1(RND); {MR=x1(C)-y1(-S)}
AY0=MR1,AR=AX1-AY1;

{AY0=x1(C)-y1(-S), AR=y0-[y1(C)+x1(-S)]}
SB=EXPADJ AR,DM(I3,M1)=AR;

{Check for bit growth, y1=y0-[y1(C)+x1(-S)]}
AR=AX0-AY0,MX1=DM(I3,M0),MY1=PM(I5,M4);

{AR=x0-[x1(C)-y1(-S)], MX1=next y1,MY1=next (-S)}
SB=EXPADJ AR,DM(I1,M1)=AR;

{Check for bit growth, x1=x0-[x1(C)-y1(-S)]}
AR=AX0+AY0,MX0=DM(I1,M0),MY0=PM(I4,M4);

{AR=x0+[x1(C)-y1(-S)], MX0=next x1,MY0=next C}
SB=EXPADJ AR,DM(I0,M1)=AR;

{Check for bit growth, x0=x0+[x1(C)-y1(-S)]}
AR=AX1+AY1; {AR=y0+[y1(C)+x1(-S)]}

bfly_lp: SB=EXPADJ AR,DM(I2,M1)=AR;    {Check for bit growth}

CALL bfp_adj;

RTS;
.ENDMOD;

Listing 14.6  Radix-2 DIT FFT Routine, Conditional Block Floating-Point



14 Software Examples

14 – 18

14.7.3 Bit-Reverse Subroutine
The bit-reversal routine, called scramble, puts the input data in bit-
reversed order so that the results will be in sequential order. This routine
uses the bit-reverse capability of the ADSP-2100 family processors.

.MODULE dit_scramble;

{ Calling Parameters
Sequentially ordered input data in inputreal

Return Values
Scrambled input data in inplacereal

Altered Registers
I0,I4,M0,M4,AY1

Altered Memory
inplacereal

}

.CONST N=1024,mod_value=H#0010; {Initialize constants}

.EXTERNAL inputreal, inplacereal;

.ENTRY scramble;

scramble: I4=^inputreal; {I4—>sequentially ordered data}
I0=^inplacereal; {I0—>scrambled data}
M4=1;
M0=mod_value; {M0=modifier for reversing N bits}
L4=0;
L0=0;
CNTR = N;
ENA BIT_REV; {Enable bit-reversed outputs on DAG1}
DO brev UNTIL CE;

AY1=DM(I4,M4); {Read sequentially ordered data}
brev: DM(I0,M0)=AY1;

{Write data in bit-reversed location}
DIS BIT_REV; {Disable bit-reverse}
RTS; {Return to calling program}

.ENDMOD;

Listing 14.7  Bit-Reverse Routine (Scramble)



14Software Examples

14 – 19

14.7.4 Block Floating-Point Scaling Subroutine
The bfp_adj routine checks the FFT output data for bit growth and scales
the entire set of data if necessary. This check prevents data overflow for
each stage in the FFT. The routine, shown in Listing 14.8, uses the
exponent detection capability of the shifter.

.MODULE dit_radix_2_bfp_adjust;

{ Calling Parameters
Radix-2 DIT FFT stage results in inplacereal and inplaceimag

Return Parameters
inplacereal  and inplaceimag adjusted for bit growth

Altered Registers
I0,I1,AX0,AY0,AR,MX0,MY0,MR,CNTR

Altered Memory
inplacereal, inplaceimag, blk_exponent

}

.CONST Ntimes2 = 2048;

.EXTERNAL inplacereal, blk_exponent; {Begin declaration section}

.ENTRY bfp_adj;

bfp_adj: AY0=CNTR; {Check for last stage}
AR=AY0-1
IF EQ RTS; {If last stage, return}
AY0=-2;
AX0=SB;
AR=AX0-AY0; {Check for SB=-2}
IF EQ RTS; {IF SB=-2, no bit growth, return}
I0=^inplacereal; {I0=read pointer}
I1=^inplacereal; {I1=write pointer}
AY0=-1;
MY0=H#4000; {Set MY0 to shift 1 bit right}



14 Software Examples

14 – 20

AR=AX0-AY0,MX0=DM(I0,M1);
{Check if SB=-1; Get 1st sample}

IF EQ JUMP strt_shift;
{If SB=-1, shift block data 1 bit}

AX0=-2; {Set AX0 for block exponent update}
MY0=H#2000; {Set MY0 to shift 2 bits right}

strt_shift: CNTR=Ntimes2 - 1; {initialize loop counter}
DO shift_loop UNTIL CE; {Shift block of data}

MR=MX0*MY0(RND),MX0=DM(I0,M1);
{MR=shifted data,MX0=next value}

shift_loop: DM(I1,M1)=MR1; {Unshifted data=shifted data}
MR=MX0*MY0(RND); {Shift last data word}
AY0=DM(blk_exponent); {Update block exponent and}
DM(I1,M1)=MR1,AR=AY0-AX0; {store last shifted sample}
DM(blk_exponent)=AR;
RTS;

.ENDMOD;

Listing 14.8  Radix-2 Block Floating-Point Scaling Routine


	14 Software Examples
	14.1 OVERVIEW
	14.2 SYSTEM DEVELOPMENT PROCESS
	14.3 SINGLE-PRECISION FIR TRANSVERSAL FILTER
	14.4 CASCADED BIQUAD IIR FILTER
	14.5 SINE APPROXIMATION
	14.6 SINGLE-PRECISION MATRIX MULTIPLY
	14.7 RADIX-2 DECIMATION-IN-TIME FFT
	14.7.1 Main Module
	14.7.2 DIT FFT Subroutine
	14.7.3 Bit-Reverse Subroutine
	14.7.4 Block Floating-Point Scaling Subroutine



