
4Data Transfer

4 – 1

4.1 OVERVIEW
This chapter describes the processor units that control the movement of
data to and from the processor, and from one data bus to the other within
the processor. These are the data address generators (DAGs) and the unit
for exchanging data between the program memory data bus and the data
memory data bus––the PMD-DMD bus exchange unit.

4.2 DATA ADDRESS GENERATORS (DAGS)
Every device in the ADSP-2100 family contains two independent data
address generators so that both program and data memories can be
accessed simultaneously. The DAGs provide indirect addressing
capabilities. Both perform automatic address modification. For circular
buffers, the DAGs can perform modulo address modification. The two
DAGs differ: DAG1 generates only data memory addresses, but provides
an optional bit-reversal capability, DAG2 can generate both data memory
and program memory addresses, but has no bit-reversal capability.

While the following discussion explains the internal workings of the
DAGs, bear in mind that the ADSP-2100 Family Development Software
(assembler and linker) provides a direct method for declaring data buffers
as circular or linear and for managing the placement of the buffer in
memory. Only the initializing of DAG registers must be explicitly
programmed: see “Indirect Addressing” and “Modulo Addressing
(Circular Buffers)” below.

4.2.1 DAG Registers
Figure 4.1, on the following page, shows a block diagram of a single data
address generator. There are three register files: the modify (M) register
file, the index (I) register file, and the length (L) register file. Each of the
register files contains four 14-bit registers which can be read from and
written to via the DMD bus.

4 Data Transfer

4 – 2

L
REGISTERS

4 x 14

MUX

ADDRESS

DMD BUS

FROM
INSTRUCTION

ADD

I
REGISTERS

4 x 14

M
REGISTERS

4 x 14

MODULUS
LOGIC

BIT
REVERSE

142 14 14 14

14

DAG1 ONLY

FROM
INSTRUCTION

2

Figure 4.1 Data Address Generator Block Diagram

The I registers (I0-I3 in DAG1, I4-I7 in DAG2) contain the actual addresses
used to access memory. When data is accessed in indirect mode, the
address stored in the selected I register becomes the memory address.
With DAG1, the output address can be bit-reversed by setting the
appropriate mode bit in the mode status register (MSTAT) as discussed
below or by using the ENA BIT_REV instruction. Bit-reversal facilitates
FFT addressing.

The data address generators employ a post-modify scheme; after an
indirect data access, the specified M register (M0-M3 in DAG1, M4-M7 in
DAG2) is added to the specified I register to generate the updated I value.
The choice of the I and M registers are independent within each DAG. In
other words, any register in the I0-3 set may be modified by any register in
the M0-M3 set in any combination, but not by those in DAG2 (M4-M7).
The modification values stored in M registers are signed numbers so that
the next address can be either higher or lower.

4Data Transfer

4 – 3

The address generators support both linear addressing and circular
addressing. The value of the L register corresponding to an I register (for
example, L0 would correspond to I0) determines which addressing scheme is used
for that I register. For circular buffer addressing, the L register is initialized
with length of the buffer. For linear addressing, the modulus logic is
disabled by setting the corresponding L register to zero.

Each time an I register is selected, the corresponding L register provides
the modulus logic with the length information. If the sum of the M register
and the I register crosses the buffer boundary, the modified I register
value is calculated by the modulus logic using the L register value.

All data address generator registers (I, M, and L registers) are loadable
and readable from the lower 14 bits of the DMD bus. Since I and L register
contents are considered to be unsigned, the upper 2 bits of the DMD bus
are padded with zeros when reading them. M register contents are signed;
when reading an M register, the upper 2 bits of the DMD bus are sign-
extended.

4.2.2 Indirect Addressing
The ADSP-2100 family processors allow two addressing modes for data
memory fetches: direct and register indirect. Indirect addressing is
accomplished by loading an address into an I (index) register and
specifying one of the available M (modify) registers.

The L registers are provided to facilitate wraparound addressing of
circular data buffers. A circular buffer is only implemented when an L
register is set to a non-zero value. For linear (i.e. non-circular) indirect
addressing, the L register corresponding to the I register used must be set
to zero.

Do not assume that the L registers are automatically initialized or may be
ignored; the I, M, and L registers contain random values following processor
reset. Your program must initialize the L registers corresponding to any I
registers it uses.

4.2.2.1 Initialize L Registers To 0 For Non-Circular Addressing
Setting an L register to a non-zero value activates the processor’s circular
addressing modulus logic. For linear indirect addressing you must set the
appropriate L register to zero to disable the modulus logic.

4 Data Transfer

4 – 4

Here is a simple example of linear indirect addressing:

I3=0x3800;
M2=0;
L3=0;
AX0=DM(I3,M2);

Here is an example which uses a memory variable to store an address
pointer:

.VAR/DM/RAM addr_ptr; {variable holds address to be
accessed}
I3=DM(addr_ptr); {I3 loaded using direct addressing}
L3=0; {disable circular addressing}
M1=0; {no post-modify of I3}
AX0=DM(I3,M1); {AX0 loaded using indirect addressing}

4.2.3 Modulo Addressing (Circular Buffers)
The modulus logic implements automatic modulo addressing for accessing
circular data buffers. To calculate the next address, the modulus logic uses
the following information:

• The current location, found in the I register (unsigned).
• The modify value, found in the M register (signed).
• The buffer length, found in the L register (unsigned).
• The buffer base address.

From these inputs, the next address is calculated according to the formula:

Next Address = (I + M – B) Modulo (L) + B

where:

I = current address
M = modify value (signed)
B = base address
L = buffer length
M + I = modified address

The inputs are subject to the condition:

|M| < L

This condition insures that the next address cannot wrap around the buffer
more than once in one operation.

4Data Transfer

4 – 5

4.2.4 Calculating The Base Address
The base address of a circular buffer of length L is 2n or a multiple of 2n,
where n satisfies the condition:

2n-1 < L ≤ 2n

In other words, the base address is L “rounded” upwards to the closest
power of 2 (or its multiple). This rule implies that a certain number of low-
order bits of the base address must be zeroes.

In practice, you do not need to calculate n yourself; the linker
automatically places circular buffers at a proper address.

4.2.4.1 Circular Buffer Base Address Example 1
For example, let us assume that the buffer length is eight. The length of the
buffer must be less than or equal to some value 2n; n therefore, must be
three or greater. The left side of the inequality rule specifies that the buffer
length must be greater than the value 2n-1; n therefore must be three or less.
The only value of n that satisfies both inequalities is three. Valid base
addresses are multiples of 2n, so in this example valid base addresses are
multiples of eight: 0x0008, 0x0010, 0x0018, and so on.

4.2.4.2 Circular Buffer Base Address Example 2
As a second example, assume a buffer length of seven. The inequality
again yields the same value for n, namely, three. With a buffer length of
seven, therefore, the valid base addresses are multiples of eight: 0x0008,
0x0010, 0x0018, and so on.

4.2.4.3 Circular Buffer Operation Example 1
Suppose that I0 = 5, M0 = 1, L0 = 3, and the base address = 4. The next
address is calculated as:

(I0 + M0 - B) mod L0 +B = (5 + 1 - 4) mod 3 + 4 = 6

The successive address calculations using I0 for indirect addressing
produce the sequence: 5, 6, 4, 5, 6, 4, 5 …. For M0 = –1 (0x3FFF), I0 would
produce the sequence: 5, 4, 6, 5, 4, 6, 5, 4 ….

4 Data Transfer

4 – 6

4.2.4.4 Circular Buffer Operation Example 2
Assume that I0 = 9, M0 = 3, L0 = 5, and the base address = 8. The
five-word buffer resides at locations 8 through 12 inclusive. The next
address is calculated as:

(I0 + M0 – B) mod L0 + B = (9 + 3 – 8) mod 5 + 8 = 12

The successive address calculations using I0 for indirect addressing
produce the sequence: 9, 12, 10, 8, 11, 9 ... This example highlights the fact
that the address sequence does not have to result in a “direct hit” of the
buffer boundary.

4.2.5 Bit-Reverse Addressing
The bit-reverse logic is primarily intended for use in FFT computations
where inputs are supplied or the outputs generated in bit-reversed order.
Bit-reversing is available only on addresses generated by DAG1. The pivot
point for the reversal is the midpoint of the 14-bit address, between bits 6
and 7. This is illustrated in the following chart.

Individual address lines (ADDRN)

Normal Order 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Bit-reversed 00 01 02 03 04 05 06 07 08 09 10 11 12 13

Bit-reversed addressing is a mode, enabled and disabled by setting a
mode bit in the mode status register (MSTAT). When enabled, all
addresses generated using index registers I0-3 are bit-reversed upon
output. (The modified valued stored back after post-update remains in
normal order.) This mode continues until the status bit is reset.

It is possible to bit-reverse address values less than 14 bits wide. You must
determine the first address and also initialize the M register to be used
with a value calculated to modify the I register bit-reversed output to the
desired range. This value is:

2(14 – N)

where N is the number of bits you wish to output reversed. For a
complete example of this, refer to Section 6.6.5.2 “Modified Butterfly” in
Chapter 6, One-Dimensional FFTs, of the applications handbook Digital
Signal Processing Applications Using the ADSP-2100 Family (Volume 1).

4Data Transfer

4 – 7

4.3 PROGRAMMING DATA ACCESSES
The ADSP-2100 Family Development Software supports the declaration
and use of a simple data structure: one-dimensional arrays, or buffers. The
array may contain a single value (a variable) or multiple values (an array).
In addition, the array may be used as a circular buffer. Here is a brief
discussion of each instance, with an example of how they are declared and
used in assembly language. Complete syntax for all assembler directives is
given in the ADSP-2100 Family Assembler Tools Manual.

4.3.1 Variables & Arrays
Arrays are the basic data structure of the ADSP-21xx. In our literature, the
word “array” and the expression “data buffer” (as well as “variable”) are
used interchangeably. Arrays are declared with assembler directives and
can be referenced indirectly and by name, can be initialized from
immediate values in a directive or from external data files, and can be
linear or circular with automatic wraparound.

An array is declared with a directive such as

.VAR/DM coefficients[128];

This declares an array of 128 16-bit values located in data memory (DM).
The special operators ^ and % reference the address and length,
respectively, of the array. It could be referenced as shown below:

I0=^coefficients; {point to address of buffer}
L0=0; {set L register to zero}
MX0=DM(I0,M0); {load MX0 from buffer}

These instructions load a value into MX0 from the beginning of the
coefficients buffer in data memory. With the automatic post-modify of the
DAGs, you could execute the second of these instructions in a loop and
continuously advance through the buffer.

Alternatively, when you only need to address the first location, you can
directly use the buffer name as a label in many circumstances such as

MX0=DM(coefficients);

The linker substitutes the actual address for the label.

4 Data Transfer

4 – 8

It is also possible to initialize a complete array/buffer from a data file,
using the .INIT directive:

.INIT coefficients: <filename.dat>;

This assembler directive reads the values from the file filename.dat into the
array at link time. This feature is supported only in the simulator — data
cannot be loaded directly into on-chip data memory by the hardware
booting sequence.

An array or data buffer with a length of one is a simple single-word
variable, and is declared in this way:

.VAR/DM coefficient;

4.3.2 Circular Buffers
A common requirement in DSP is the circular buffer. This is directly
implemented by the processors’ data address generators (DAGs), using
the L (length) registers. First, you must declare the buffer as circular:

.VAR/DM/CIRC coefficients[128];

This identifies it to the linker for placement on the proper address
boundary. Next, you must initialize the L register, typically using the
assemblers’s % operator (or a constant) and, in the example below, the I
register and M register:

L0=%coefficients; {length of circular buffer}
I0=^coefficients; {point to first address of buffer}
M0=1; {increment by 1 location each time}

Now a statement like

MX0=DM(I0,M0); {load MX0 from buffer}

placed in a loop, cycles continuously through coefficients and wraps
around automatically.

4Data Transfer

4 – 9

4.4 PMD-DMD BUS EXCHANGE
The PMD-DMD bus exchange unit couples the program memory data bus
and the data memory data bus, allowing them to transfer data between
them in both directions. Since the program memory data (PMD) bus is 24
bits wide, while the data memory data (DMD) bus is 16 bits wide, only the
upper 16 bits of PMD can be directly transferred. An internal register (PX)
is loaded with (or supplies) the additional 8 bits. This register can be
directly loaded or read when the full 24 bits are required.

Note that when reading data from program memory and data memory
simultaneously, there is a dedicated path from the upper 16 bits of the
PMD bus to the Y registers of the computational units. This read-only path
does not use the bus exchange circuit; it is the path shown on the
individual computational unit block diagrams.

4.4.1 PMD-DMD Block Diagram Discussion
Figure 4.2 shows a block diagram of the PMD-DMD bus exchange. There
are two types of connections provided by this circuitry.

PMD BUS

DMD BUS

8 (LOWER) 16 (UPPER) 16 (UPPER)

24

16

16

M
U
X

PX

R
E
G
I
S
T
E
R

8

8
8 (LOWER)

16

8 (LOWER)

Figure 4.2 PMD–DMD Bus Exchange

4 Data Transfer

4 – 10

The first type of connection is a one-way path from each bus to the other.
This is implemented with two tristate buffers connecting the DMD bus
with the upper 16 bits of the PMD bus. One of these two buffers is
normally used when data is exchanged between the program memory and
one of the registers connected to the DMD bus. This is the path used to
write data to program memory; it is not shown in the individual
computational unit block diagrams.

The second connection is through the PX register. The PX register is 8-bits
wide and can be loaded from either the lower 8 bits of the DMD bus or the
lower 8 bits of the PMD bus. Its contents can also be read to the lower 8
bits of either bus.

PX register access follows the principles described below.

From the PMD bus, the PX register is:

1. Loaded automatically whenever data (not an instruction) is read from
program memory to any register. For example:

AX0 = PM(I4,M4);

In this example, the upper 16 bits of a 24-bit program memory word
are loaded into AX0 and the lower 8 bits are automatically loaded into
PX.

2. Read out automatically as the lower 8 bits when data is written to
program memory. For example:

PM(I4,M4) = AX0;

In this example, the 16 bits of AX0 are stored into the upper 16 bits of a
24-bit program memory word. The 8 bits of PX are automatically

4Data Transfer

4 – 11

stored to the 8 lower bits of the memory word.

From the DMD bus, the PX register may be:

1. Loaded with a data move instruction, explicitly specifying the PX
register as the destination. The lower 8 bits of the data value are used
and the upper 8 are discarded.

PX = AX0;

2. Read with a data move instruction, explicitly specifying the PX register
as a source. The upper 8 bits of the value read from the register are all
zeroes.

AX0 = PX;

Whenever any register is written out to program memory, the source
register supplies the upper 16 bits. The contents of the PX register are
automatically added as the lower 8 bits. If these lower 8 bits of data to be
transferred to program memory (through the PMD bus) are important,
you should load the PX register from DMD bus before the program
memory write operation.

	4 Data Transfer
	4.1 OVERVIEW
	4.2 DATA ADDRESS GENERATORS (DAGS)
	4.2.1 DAG Registers
	4.2.2 Indirect Addressing
	4.2.2.1 Initialize L Registers To 0 For Non-Circular Addressing

	4.2.3 Modulo Addressing (Circular Buffers)
	4.2.4 Calculating The Base Address
	4.2.4.1 Circular Buffer Base Address Example 1
	4.2.4.2 Circular Buffer Base Address Example 2
	4.2.4.3 Circular Buffer Operation Example 1
	4.2.4.4 Circular Buffer Operation Example 2

	4.2.5 Bit-Reverse Addressing

	4.3 PROGRAMMING DATA ACCESSES
	4.3.1 Variables & Arrays
	4.3.2 Circular Buffers

	4.4 PMD-DMD BUS EXCHANGE
	4.4.1 PMD-DMD Block Diagram Discussion

